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On the basis of a simple theoretical model, the ease ofpenetration of f3-lactam
antibiotics through the outer membrane ofEscherichia coli was measured. The
cell envelope was found to act as a diffusion barrier to both penicillins and
cephalosporins. The validity of the model and the cooperative action of cell-
bound f8-lactamase and outer membrane were further verified by comparing
calculated and experimentally determined velocities of /8-lactam hydrolysis by
intact cells and sonically treated cell suspensions. The results showed good
correspondence at five different antibiotic concentrations. Similar conclusions
could be drawn from a comparison of (3-lactam concentrations on both sides of
the outer membrane, calculated from enzyme kinetic measurements and mini-
mal inhibitory concentrations for both a (8-lactamase-producing E. coli and its
enzyme-negative variant. in the case of benzylpenicillin and cephalothin, how-
ever, no correspondence was found. The joint action of several parameters
determining the efficacy of penicillins and cephalosporins against 63-lactamase-
producing E. coli is discussed.

Escherichia coli can carry extrachromosomal
resistance determinants (R factors) mediating
constitutive synthesis of 3-lactamase (EC
3.5.2.6). The production of this enzyme renders
the organisms less susceptible to the lethal ac-
tion of penicillins and cephalosporins and may
even lead to complete resistance to these anti-
biotics (14, 15, 17).
Whereas gram-positive 63-lactamase-produc-

ing organisms liberate their enzyme into the
surrounding medium, the 3-lactamases of
gram negative bacteria are compartmentalized
(4, 15). The fact that these enzymes can be to-
tally released from E. coli by osmotic shock
(8, 9) demonstrates that they are attached
loosely to the cytoplasmic membrane or localized
in the periplasm.
Both f3-lactamases and the outer membrane

are important factors in the resistance ofE. coli
to penicillins and cephalosporins (1-3, 18). Con-
clusions regarding the ease of penetration of
these antibiotics through the outer membrane,
however, have mainly been drawn from com-
parisons of rates of hydrolysis by intact cells
and sonically treated cell suspensions (6, 15).
This determination alone is not sufficient to
measure outer-membrane permeability.
Given a periplasmic localization of 3-lacta-

mase and assuming that both penicillins and

t Present address: Centre de Recherches Agricoles, Ciba-
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cephalosporins reach their targets by a simple
diffusion process, we have developed a different
approach to measuring the role of the outer
membrane of E. coli as a permeability barrier
to (3-lactam antibiotics. Experimental evidence
is presented to show that the difference in (8-
lactam concentration on either side ofthe outer
membrane depends not only on the permeabil-
ity of the outer membrane, but also on the
kinetic characteristics of the cell-bound peri-
plasmic ,8-lactamase.

MATERIALS AND METHODS
Bacterial strains, growth conditions, media and

buffers. E. coli 205 (serotype 055) and its R-factor-
carrying variant E. coli 205 (R4EM) were used in all
experiments. Both are standard screening strains
from our laboratories and are designated as E. coli
(R-) and E. coli (R+), or simply as R- and R+ in the
following text. The TEM R factor was transferred to
E. coli 205 from E. coli TEM (R4m) (4). The media
used were brain heart infusion and brain heart infu-
sion agar (BBL, Cockeysville, Md). Cells were
grown at 37°C. Phosphate buffer was 0.067 M S6ren-
sen buffer, pH 7.0.
(3-Lactamase assay. (3-Lactamase activity was as-

sayed by a modification of the micro-iodometric
method (12). Substrate was preincubated in a water
bath for 5 min to 37°C, and the reaction was then
initiated by adding enzyme solution (intact cells or
sonically treated cell suspension; see below). Hy-
drolysis was stopped by adding up to 1 ml of reaction
mixture to 1 ml of starch-iodine reagent, and the
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total sample volume was made up to 2 ml with
phosphate buffer if necessary. Starch-iodine reagent
was prepared by mixing 100 ,lA of 0.08 M iodine-3.2
M potassium iodide with 80 ml of 0.25 M sodium
tungstate in 1 N acetic acid and then adding 20 ml of
2% (wt/vol) soluble starch which had been dissolved
in 1 N acetic acid by gentle boiling for 2 to 3 min. In
all assays, we ran controls of identical composition
but to which the enzyme had been added to the
substrate after the admixture of the starch-iodine
reagent. Absorbance was measured at 623 nm 20
min after the reaction had been stopped. To convert
rates of decolorization of the blue starch-iodine com-
plex into enzyme reaction velocities, the iodine con-
sumption of each substrate was determined experi-
mentally after complete hydrolysis of penicillins or
cephalosporins with TEM-type fl-lactamase or (-
lactamase from Aerobacter cloacae P 99 (7), respec-
tively.
Determination of velocities of .8-lactam hydroly-

sis by intact cells and sonically treated suspensions.
Exponentially growing cultures ofE. coli (R+) were
harvested by centrifugation for 15 min at 5,000 x g
at 2°C and resuspended at 10-fold the original den-
sity in ice-cold phosphate buffer. A small part ofthis
suspension was used directly in assaying the (8-
lactamase activity of intact cells (vwtct). The rest of
the cells were converted to spheroplasts (13), and
complete liberation of ,3-lactamase was achieved by
short ultrasonic treatment ofthe spheroplasts at 0°C
with a Branson B-12 Sonifier (Branson Sonic Power
Co., Danbury, Conn.). This suspension was then
used to measure the velocity of hydrolysis by soni-
cally treated cell suspensions (v.wcatd).
Enzyme kinetic parameters. Michaelis constants

(Ki) and maximal rates of substrate hydrolysis
(Va,,) were determined with enzyme from a soni-
cally treated suspension ofE. coli 205 (R+) prepared
as described above. Both parameters were calcu-
lated from a plot of [S]lv versus [S] (Woolf plot).
Measurement of MICs. Minimal inhibitory con-

centrations (MICs) were determined in a short-term
assay with a small inoculum. Exponential-phase
cultures were diluted to a density of 103 cells/ml.
Portions of these cultures were prewarmed for 5 min
to 37°C, and the MIC determination was started by
adding increasing concentrations of antibiotic. Via-
ble-cell counts were made at the beginning and after
2 h ofincubation by directly plating 0.2 ml from each
culture on 20-ml agar plates and counting the colo-
nies after 18 h of incubation at 37°C. The MIC was
defined as the concentration at which neither an
increase nor a decrease in the viable-cell count oc-
curred during 2 h of incubation. It was determined
graphically by interpolation.

Antibiotics and reagents. The cephalosporins and
penicillins investigated were cephacetrile (Ciba-
Geigy Ltd., Basel, Switzerland), cephaloridine
(Glaxo Ltd., Greenford, Middlesex, U.K.), cephalo-
thin (Eli Lilly & Co., Indianapolis, Ind.), cefazolin
(Fujisawa Pharmaceutical Co., Ltd., Osaka, Japan),
benzylpenicillin (Novo Industri A/S, Copenhagen,
Denmark), ampicillin (Beecham Research Labora-
tories, Betchworth, Surrey, U.K.), and two experi-
mental cephalosporins synthesized in the laborato-

ries of Ciba-Geigy Ltd., Basel: C 49,288 [7-cyanace-
tamido-3-(1-methyltetrazole-5-ylthio)methylceph-3-
em-4-carboxylic acid, sodium salt] and C 49,753 [7-
cyanacetamido-3-(1,3,4-thiadiazole-5-ylthio)methyl-
ceph-3-em-4-carboxylic acid, sodium salt].
The soluble starch used was starch-gel according

to Smithies (Serva Feinbiochemica GmbH & Co.,
Heidelberg, Germany).

RESULTS

Postulates made for determining the
permeability parameter C. Our general as-
sumptions were the following. (i) The outer
membrane of E. coli is a diffusion barrier to
both penicillins and cephalosporins and is char-
acterized by a permeability parameter C. (ii) (3-
Lactam antibiotics reach the site of /3-lacta-
mase action in the periplasm by passive diffu-
sion, not by active transport (10, 11). (iii) Km
and Vma. are the same both for cell-bound ,3-
lactamase in the intact cell and for free enzyme
in sonically treated suspensions. (iv) At a given
antibiotic concentration outside the (3-lacta-
mase-synthesizing cells, S0, a steady state, is
rapidly established at which the rate of anti-
biotic diffusion and the velocity of 8-lactam
hydrolysis are equal. At the steady state, the
antibiotic concentration inside the outer mem-
brane is Se. It is determined by the four param-
eters So, Ki, Vmax, and C. Hence:

steady state: C(So - Se) = Se' + Km (1)

and

Se = 0.5 So- Km - Vmax

+ (S +Km+VCa)2+4SOKm] (2)

Experimental determination of the permea-
bility parameter C. Velocities of 83-lactam hy-
drolysis by intact cells and by sonically treated
cell suspensions of E. coli (R+) were measured
at a 0.1 mM substrate concentration. The anti-
biotic concentration Se on the inner side of the
outer membrane was then calculated from
vintact/Vsonicated and from Km and Vmax deter-
mined with sonically treated suspensions:

Se = (Vintact -Km)/(Vmax -Vintact) (3)
From these data, the relative values for the
diffusion parameter C were obtained from
equation (1). Five of the six cephalosporins
tested had very similar C-values (Table 1). On
the other hand, the barrier function ofthe outer
membrane was more pronounced for cephalo-
thin and the two penicillins. Comparison of the
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partition coefficients given in the last column
indicates that these three antibiotics are also
the most lipophilic f8-lactams in the whole
group tested.
Comparison of calculated and experimen-

tally determined values of vintact/v ted at
different antibiotic concentrations SO. ccord-
ing to our assumptions, Se and consequently
also vintact/vsonicated depend not only onKm, Vmax,
and C, but also on the concentration SO at
which these two velocities are measured. If
these assumptions are valid, then vinAct/vsonicaWd
must be practically constant at low values ofSO,
and both velocities should become equal at high
antibiotic concentrations. Table 2 gives a com-
parison of vintact/vsonicatd calculated and deter-
mined experimentally at five different values of
S,. The calculations are based on the values of
Ki, V.,, and C in Table 1 and on equation (2)
above. In general, there was a good correspond-
ence between predicted and experimentally
measured data. Benzylpenicillin and ampicillin

were only compared at 5 mM concentrations,
and Vintact was corrected for hydrolysis by leaked
enzyme. Leakage of even very low amounts of
,8-lactamase makes it very difficult to deter-
mine Vintact accurately with these two antibiot-
ics, since the differences in the antibiotic con-
centrations on either side of the outer mem-
brane are large and a small quantity of free
enzyme can hydrolyze more of these two sub-
strates than the total cell-bound 83-lactamase
active at a much lower concentration Se.
Further experimental verification of our

basic assumptions. It can reasonably be as-
sumed that the susceptibility of the cell wall-
synthesizing enzymes, the targets of,3-lactam
antibiotics, is not influenced or altered by the
presence of 8-lactamase. The MIC for a p-lacta-
mase-producing E. coli can thus be interpreted
as a concentration, SO, which is reduced by the
activity of the hydrolyzing enzyme inside the
outer membrane to an inner concentration, Se,
corresponding to the MIC determined with a (3-

TABLE 1. Determination of antibiotic concentration Se at the site of ,-lactamase action and of the diffusion
parameter C at a concentration SO = 0.1 mM

Antibiotic Vintact K (ILK Vara SC (IL C (x104) P°
Vsonicated

Cephacetrile 0.58 1,400 100 57 8.9 0.021
Cephaloridine 0.22 1,050 650 21 16 0.124
Cephalothin 0.07 300 70 5.4 1.3 0.259
Cefazolin 0.34 450 80 30 7.0 0.037
C 49,288 0.55 1,050 145 53 15 0.012
C 49,753 0.39 450 115 34 12 0.020
Benzylpenicillinc 0.034 20 580 0.7 1.9 0.6
Ampicillinc 0.04 40 650 1.6 2.5 0.159

a Relative values; Vma, of cephacetrile = 100.
b Partition coefficient in iso-butanol-0.02 M phosphate buffer (pH 7.4)-0.9% (wt/vol) NaCl; experiments

done at 370C.
c Vintact/v.nX,lta,e Se, and C determined at S0 = 1 mM.

TABLE 2. Comparison ofcalculated and experimentally determined values for va,a/V,,d at five different
antibiotic concentrations SO

VtnwV,on.kawd at So value of:
Antibiotic

0.02 mM 0.05 mM 0.5mM 1 mM 5 mM

Cephacetrile 0.55a/0.61b 0.56/0.58 0.67/0.61 0.75/0.72 0.96/0.94
Cephaloridine 0.21/0.17 0.21/0.19 0.30/0.30 0.38/0.44 0.82/0.97
Cephalothin 0.06/0.06 0.06/0.08 0.14/0.14 0.23/0.19 0.80/0.54
Cefazolin 0.29/0.32 0.31/0.32 0.54/0.52 0.72/0.72 0.98/1.1
C 49,288 0.50/0.52 0.53/0.55 0.67/0.66 0.77/0.77 0.97/1.02
C 49,753 0.33/0.27 0.34/0.33 0.58/0.54 0.76/0.77 0.98/1.04
Benzylpenicillin NDC ND ND ND 0.16/0.28
Ampicillin ND ND ND ND 0.19/0.11

a Calculated with Ki, V",<lx and C from Table 1.
b Measured experimentally; mean of at least two determinations.
c ND, Not determined.
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TABLE 3. Comparison ofthe quotients MIC R-IMIC
R+ with calculated values for Se/So

Antibiotic MIC R-/MIC R+ S./SO

Cephacetrile 0.5 0.5
Cephaloridine 0.1 0.2
Cephalothin 0.4 0.05
Cefazolin 0.4 0.25
C 49,288 0.8 0.5
C 49,753 0.6 0.3
Benzylpenicillin 0.033 0.001
Ampicillin 0.006 0.002

lactamase-negative variant. The ratio of the
MICs obtained with the R- and R+ strains ofE.
coli 205 should therefore correspond to the Se/SO
value of the /3-lactamase-producing cell calcu-
lated at SO equal to the MIC of the R+ strain.
This assumption, however, is correct only as

long as the antibiotic concentration S0 remains
constant throughout the MIC determination. In
our case, this condition was fulfilled by using a

short-term assay at low cell densities. A com-

parison of the experimentally determined MIC
R-/MIC R+ quotients and the Se/So values ob-
tained by calculation is given in Table 3. Again,
there was a relatively good correspondence be-
tween the calculated and measured data, pro-

viding further evidence of the validity of our

model. The reasons for the large difference be-
tween the results for benzylpenicillin and ceph-
alothin, however, are unknown. It is possible
that the barrier function of the outer mem-

brane is altered during the MIC determination.

DISCUSSION

The permeability of the outer membrane has
been studied in detail by Nikaido (10, 11). He
concluded that low-molecular-weight hydro-
philic antibiotics diffuse through aqueous
pores. The results of the present study agree
with this assumption. They clearly show that
the outer membrane of E. coli is a diffusion
barrier for both penicillins and cephalosporins.
Its apparently unrestricted penetrability for
cephaloridine, described by several authors (4,
6, 16), is certainly explained by the high con-
centrations they used in measuring the velocity
of cephaloridine hydrolysis. The data in Table 1
also indicate that an increase in the lipophilic
character of the /8-lactam tends to decrease its
rate of diffusion.
A simple comparison of the velocities of hy-

drolysis by intact cells and sonically treated cell
suspensions is not enough to indicate the ease
of passage of a f3-lactam antibiotic through the

outer membrane. In a theoretical study of syn-
ergism between i8-lactam antibiotics, Hamil-
ton-Miller (5) calculated the antibiotic concen-
tration Se in the periplasm from the three pa-
rameters S0, Ki, and a substrate permeability
factor, P, equal to vsni,catedvintact. In contrast to
our diffusion parameter C, however, this factor
P is not a direct measure of outer-membrane
permeability. In addition, the results in Table 2
show clearly that P depends on the (3-lactam
concentration So at which it is determined.
When considering the efficacy of penicillins

or cephalosporins against /8-lactamase-produc-
ing E. coli, it should also be noted that all our
experiments were made at a practically con-
stant S0. They reveal the degree of protection
that the combined action of the outer mem-
brane and (8-lactamase can afford to each indi-
vidual cell. Against benzylpenicillin and ampi-
cillin these defenses are very efficient, but the
cells remain relatively susceptible to most of
the cephalosporins tested. In infections with
whole populations of f3-lactamase-producing E.
coli, however, the possibility must also be con-
sidered that additional protection may be
achieved through an enzyme-mediated reduc-
tion in the serum or tissue concentration of the
penicillin or cephalosporin in question.
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